Chapter 01

Real Numbers

- For given positive integers ' a ' and ' b ' there exist unique whole numbers ' q ' and ' r ' satisfying the relation $=b q+r, 0 \leq r<b$.
- Euclid's division algorithms: HCF of any two positive integers a and b. With $a>b$ is obtained as follows:
Step 1: Apply Euclid's division lemma to a and b to find q and r such that $=b q+r, 0 \leq r<b$.
a= Dividend
b=Divisor
$\mathrm{q}=$ quotient
r=remainder
Step II: If $r=0, \operatorname{HCF}(a, b)=b$ if $r \neq 0$, apply Euclid's lemma to b and r .
Step III: Continue the process till the remainder is zero. The divisor at this stage will be the required HCF
- The Fundamental Theorem of Arithmetic: Every composite number can be expressed (factorized) as a product of primes and this factorization is unique, apart from the order in which the prime factors occur. Ex : $24=2 \times 2 \times 2 \times 3=3 \times 2 \times 2 \times 2$
- Let $x=\frac{p}{q}, q$ ' $\neq 0$ to be a rational number, such that the prime factorization of ' q ' is of the form $2 m 5 n$, where m, n are non-negative integers. Then x has a decimal expansion which is terminating.
- Let $\mathrm{x}=\frac{\mathrm{p}}{\mathrm{q}}, \mathrm{q} \neq 0$ be a rational number, such that the prime factorization of q is not of the form 2 m 5 n , where m, n are non-negative integers. Then x has a decimal expansion which is non-terminating repeating.
- $\sqrt{\mathrm{p}}$ is irrational, which p is a prime. A number is called irrational if it cannot be written in the

