Key Notes

Chapter-12

Area Related to Circles

- Circle: A circle is the locus of a point which moves in a plane in such a way that its distance from a fixed point always remains the same. The fixed point is called the center and given constant distance is known as the radius of the circle.
- Segment of a Circle: The portion (or part) of a circular region enclosed between a chord and the corresponding arc is called a segment of the circle. In adjacent fig. APB is minor segment and $A Q B$ is major segment.

- Sector of a Circle: The portion (or part) of the circular region enclosed by the two radii and the corresponding arc is called a sector of the circle. In adjacent figure OAPB is minor sector and OAQB is the major sector.

- Area of circle $=\pi r^{2}$ where ' r ' is the radius of the circle.
- Area of Semi circle $=\frac{\pi^{2}}{2}$
- Area enclosed by two concentric circles
$=\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$
$=\pi(\mathrm{R}+\mathrm{r})(\mathrm{R}-\mathrm{r}) ; \mathrm{R}>\mathrm{r}$
where ' R ' and ' r ' are radii of two concentric circles.

- The arc length ' l ' of a sector of angle θ^{\prime} ' in a circle of radius ' r ' is given by

$$
1=\frac{\sigma}{360^{\circ}} \times . \pi
$$

$$
1=\frac{\sigma}{180^{\circ}} \times . \pi
$$

- If the arc subtends an angle θ, then area of the corresponding sector is $\frac{\theta}{360^{\circ}} \times \pi r^{2}$

- Angle described by minute hand in 60 minutes $=360^{\circ}$. Angle described by minute hand in 1

$$
\text { minute }=\left(\frac{360^{\circ}}{60}\right)=6^{\circ}
$$

