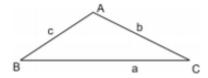

## **Key Notes**

### Chapter 12


#### Heron's Formula

- 1. Area of a Triangle by Heron's Formula
- 2. Application of Heron's Formula in finding Areas of Quadrilaterals
- Triangle with base 'b' and altitude 'h' is

Area = 
$$\frac{1}{2} \times \times \times$$

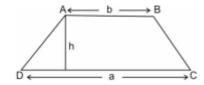



- Triangle with sides a, b and c
  - (i) Semi perimeter of triangle  $s = \frac{a+b+}{2}$
  - (ii) Area =  $\sqrt{s(s-a)(s-b)(s-c)}$  square units.



• Equilateral triangle with side 'a'

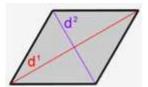
Area = 
$$\frac{\sqrt{3}}{4}a^2$$
 square units




• Trapezium with parallel sides 'a' & 'b' and the distance between two parallel sides as 'h'.

Area = 
$$\frac{1}{2}$$
(a+b)h square units

## www.ncrtsolutions.in


# **Key Notes**



• Rhombus with diagonals  $d_1$  and  $d_2$ 

Area = 
$$\frac{1}{2}d_1 \times d_2$$
;

Perimeter = 
$$2\sqrt{d_1^2 + d_2^2}$$

